Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

\square

CHEMISTRY

Paper 3 Advanced Practical Skills 1
May/June 2018
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 14 and 15.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 14 printed pages and 2 blank pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 In this experiment you will use a solution of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, to determine the concentration of a solution of hydrochloric acid, HCl , by carrying out a titration.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FA 1 is a solution of sodium carbonate containing $1.30 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ in each $250 \mathrm{~cm}^{3}$.
FA 2 is hydrochloric acid, HCl .
methyl orange indicator
(a) Method

- Fill a burette with FA 2.
- Use the pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
- Add a few drops of methyl orange indicator.
- Perform a rough titration and record your burette readings in the space below.
cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 2 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 2 to be used in your calculations. Show clearly how you obtained this value.
$25.0 \mathrm{~cm}^{3}$ of FA 1 required cm^{3} of FA 2. [1]
(c) Calculations
(i) Give your answer to (ii), (iii) and (iv) to an appropriate number of significant figures.
(ii) Calculate the number of moles of sodium carbonate present in $25.0 \mathrm{~cm}^{3}$ of FA 1.
moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ \qquad mol [1]
(iii) Calculate the number of moles of hydrochloric acid that reacted with the number of moles of sodium carbonate you calculated in (ii).
moles of $\mathrm{HCl}=$ \qquad mol [1]
(iv) Use your answers to (b) and (c)(iii) to calculate the concentration of hydrochloric acid in FA 2.
\qquad moldm^{-3}
[Total: 12]

2 In this question you will determine the identity of the halogen in compound \mathbf{W}. Compound \mathbf{W} is the halogenoethanoic acid $\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H}$, where X is a halogen.

4 g of \mathbf{W} were heated with $250 \mathrm{~cm}^{3}$ of $0.400 \mathrm{moldm}^{-3}$ aqueous sodium hydroxide. Some of the sodium hydroxide reacted with compound \mathbf{W}. The solution that remained after this reaction is FA 3.

By titrating FA 3 with hydrochloric acid, you will determine how much of the sodium hydroxide remained after reaction with \mathbf{W}. You will then calculate how much sodium hydroxide had reacted and use this to determine the identity of X in $\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H}$.

FA 3 is aqueous sodium hydroxide after reaction with \mathbf{W}.
FA 4 is $0.100 \mathrm{moldm}^{-3}$ hydrochloric acid, HCl .
bromophenol blue indicator

(a) Method

- Fill the second burette with FA 4.
- Rinse the pipette with distilled water followed by a little FA 3.
- Use the pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 4 added in each accurate titration.

I	
II	
III	

- From your accurate titration results, obtain a suitable value for the volume of FA 4 to be used in your calculations. Show clearly how you obtained this value.

(b) Calculations

A halogenoethanoic acid reacts with aqueous sodium hydroxide in two reactions.
The alkali neutralises the carboxylic acid.

$$
\mathrm{NaOH}+\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}
$$

The halogenoalkyl group then undergoes a substitution reaction.

$$
\mathrm{NaOH}+\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{Na} \rightarrow \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{Na}+\mathrm{NaX}
$$

(i) Calculate the number of moles of hydrochloric acid, FA 4, present in the volume calculated in (a).

$$
\text { moles of } \mathrm{HCl}=
$$

\qquad mol

Hence deduce the number of moles of sodium hydroxide present in $25.0 \mathrm{~cm}^{3}$ of FA 3 .
moles of NaOH in $25.0 \mathrm{~cm}^{3} \mathrm{FA} 3=$ \qquad mol
(ii) Calculate the number of moles of sodium hydroxide added to the 4 g of \mathbf{W}.
moles of NaOH added to $4 \mathrm{~g} \mathrm{~W}=$ \qquad mol

Calculate the number of moles of sodium hydroxide that remain after the reaction with compound \mathbf{W}.
(iii) Calculate the number of moles of sodium hydroxide that reacted with \mathbf{W}.

$$
\text { moles of } \mathrm{NaOH} \text { that reacted with } \mathbf{W}=
$$

\qquad mol

Hence calculate the number of moles of \mathbf{W} that reacted with this number of moles of sodium hydroxide.
moles of \mathbf{W} that reacted $=$ \qquad
(iv) Use your answer to (iii), and the mass of \mathbf{W} used to make FA 3, to calculate the M_{r} of \mathbf{W}.

$$
\begin{equation*}
M_{r} \text { of } \mathbf{W}= \tag{1}
\end{equation*}
$$

(v) \mathbf{W} is a halogenoethanoic acid, $\mathrm{CH}_{2} \mathrm{XCO}_{2} \mathrm{H}$. Use your answer to (iv) to determine the identity of X. Explain how you reached your conclusion.
\qquad
\qquad
\qquad
(c) Apart from any inaccuracies in reading the volumes of solutions, suggest a significant source of error in this practical exercise.
Explain how you could minimise this error.
\qquad
\qquad
\qquad
(d) State at what M_{r} value of \mathbf{W}, closest to the one calculated in (b)(iv), you would have concluded that X was a different halogen.
[Total: 11]

Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) Half fill the $250 \mathrm{~cm}^{3}$ beaker with water. Heat to approximately $70^{\circ} \mathrm{C}$, then turn off the Bunsen burner. This will be used as a water bath.
(i) FA 5 is an aqueous solution of an organic compound. Carry out the following tests on FA 5 and record your observations in the table.

test	
To a 1 cm depth of FA 5 in a test-tube add a small spatula measure of sodium carbonate.	
To a 1 cm depth of FA 5 in a test-tube add two drops of acidified potassium manganate(VII). Leave to stand in the water bath.	
To a 1 cm depth of FA 5 in a test-tube add a few drops of aqueous silver nitrate.	
To a 1 cm depth of aqueous silver nitrate in a test-tube add a few drops of aqueous sodium hydroxide and then add aqueous ammonia slowly until the grey precipitate that forms just dissolves. This is Tollens' reagent. To this solution add a 1 cm depth of FA 5 and leave to stand in the water bath. Care: rinse the tube as soon as you have completed this test.	

(ii) Suggest two functional groups that could be present in FA 5.
and \qquad
(b) FA 6 is a mixture that contains two cations and two anions from the Qualitative Analysis Notes. Distilled water was added to FA 6, the mixture was stirred and then filtered. You are provided with the dried residue, FA 7, and the filtrate, FA 8, from this process.
(i) Tests on the residue, FA 7

Carry out the following tests and record your observations in the table.

test	observations
Place a spatula measure of FA 7 in a boiling tube. Add dilute hydrochloric acid until no further reaction occurs, then	
transfer a 1 cm deps of the solution into a test-tube. To this add aqueous sodium hydroxide.	

(ii) Tests on the filtrate, FA 8

Carry out the following tests and record your observations in the table.

test	observations
To a 1 cm depth of FA 8 in a boiling tube add a 1 cm depth of aqueous sodium hydroxide, then	
warm gently.	
To a 1 cm depth of FA 8 in a boiling tube add a piece of aluminium foil and a 1 cm depth of aqueous sodium hydroxide. Warm gently.	

(iii) Conclusions about cations

State one cation that is definitely present in FA 6.
\qquad
State two possible identities for the other cation present in FA 6.
\qquad or

Suggest how you could determine which of these two possible cations is present. Do not carry out this test.
\qquad
\qquad
\qquad

(iv) Conclusions about anions

State one anion that is definitely present in FA 6.
\qquad
State two possible identities for the other anion present in FA 6.
or

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} l^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $I^{-(a q)}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

	을
	Oi ${ }^{\circ}$
	8 ¢ ¢
	®
	n ¢
	ま
Ge	
	® U

